Syllabus

MATH 1600

Calculus I and Analytic Geometry

2024

Committee Members:

Phil Broberg, Central Community College
Chad Haugen & Thankam Samuel, Metropolitan Community
College Micah Marvin, Mid-Plains Community College
Beth Welke, Northeast Community College
Noah Weiss, Southeast Community College
Nancy Resseguie, Western Nebraska Community College
N/A, Little Priest Tribal College
N/A, Nebraska Indian Community College

Facilitator: Beth Welke

The Institution agrees to the contents in this syllabus including course prefix, number, course description and other contents of this syllabus.

இவ்வூட்டி Chief Academic Officer, Central Comn	04/19/2024 nunity College	Adopt
Chief Academic Officer, Little Priest Tr	04/25/2024 ribal College	Adopt
Tom McDonnell Chief Academic Officer, Metropolitan	05/09/2024 Community College	Decline
Jody Tomaruk Chief Academic Officer, Mid-Plains Co	04/19/2024 ommunity College	Adopt
Kuntur Chl Chief Academic Officer, Nebraska Indi	05/01/2024 ian Community College	Adopt
Charlene Willener Chief Academic Officer, Northeast Co	04/21/2024 mmunity College	Adopt
Joel Michaelis Chief Academic Officer, Southeast Co	04/29/2024 mmunity College	Adopt
Grant Wilson Chief Academic Officer, Western Neb	04/19/2024 raska Community College	Adopt

I. CATALOG DESCRIPTION

MATH 1600

Calculus I and Analytic Geometry

Prerequisite: College Algebra & Trigonometry or PreCalculus or appropriate placement score.

This course is a study of single variable calculus and analytical geometry. Topics include limits, continuity, derivatives, applications of derivatives, integrals, and applications of integrals.

5.0 semester credit hours/7.5 quarter credit hours/75 contact hours

II. COURSE OBJECTIVES/COMPETENCIES

The course will:

- 1. Present analytical, numerical and graphical techniques to establish limits.
- 2. Introduce analytical, numerical and graphical techniques to verify continuity.
- 3. Present the definition to find derivatives.
- 4. Provide the rules of differentiation to calculate derivatives.
- 5. Relate the concepts of differentiation to analyze increasing and decreasing functions, locate extrema and determine concavity.
- 6. Use the concepts of differentiation to calculate rates of change.
- 7. Apply techniques of differentiation to optimize functions.
- 8. Develop the definition of integrals using approximation.
- 9. Provide the rules of integration to calculate integrals.
- 10. Apply the concepts of integration to calculate area between curves.
- 11. Use the concepts of integration to calculate volumes of solids.

Nebraska Transfer Initiative

MATH1600 – Analytic Geometry and Calculus I

Updated: 2024

Page 1 of 5

III. STUDENT LEARNING OUTCOMES

Limits and Continuity

Outcomes: Students will be able to:

- Calculate rates of change
- Find the equation of a tangent to a curve
- Calculate limits of a function using the limit laws
- Evaluate one-sided limits and limits at infinity
- Evaluate infinite limits and find vertical asymptotes
- Verify continuity of functions

Derivatives

Outcomes: Students will be able to:

- Find derivatives and equations of tangents at a point
- Express the derivative as a function
- Utilize differentiation rules for polynomials, products, and quotients
- Interpret the derivative as a rate of change
- Find the derivatives of transcendental functions
- Utilize the chain rule
- Determine higher order derivatives
- Use implicit differentiation
- Utilize the mean value theorem

Applications of Derivatives

Outcomes: Students will be able to:

- Determine absolute extrema
- Solve related rates problems
- Utilize linearization and differentials
- Use the first and second derivatives to identify local extrema and sketch curves
- Solve applied optimization problems
- Utilize Newton's Method

Nebraska Transfer Initiative

MATH1600 – Analytic Geometry and Calculus I

Updated: 2024 Page 2 of 5

Integrals

Outcomes: Students will be able to:

- Estimate with finite sums
- Use sigma notation and limits of finite sums
- Evaluate definite integrals
- Utilize the fundamental theorem of calculus
- Evaluate indefinite integrals
- Use the substitution method to evaluate integrals

Applications of Definite Integrals

Outcomes: Students will be able to:

- Find the area under a curve and between curves
- Determine volumes of solids

IV. CONTENT/TOPICAL OUTLINE

- A. Limits and Continuity
 - 1. Rates of change
 - 2. Limits of functions
 - 3. Continuity

B. Derivatives

- 1. Derivative at a point
- 2. Derivative as a function
- 3. Differentiation Rules
- 4. Derivative as Rate of Change
- 5. Derivatives of Transcendentals Functions
- 6. Chain Rule
- 7. Implicit Differentiation
- 8. Higher Order Derivatives
- 9. Linearization and Differentials

Nebraska Transfer Initiative

MATH1600 – Analytic Geometry and Calculus I

Updated: 2024

Page 3 of 5

C. Applications of Derivatives

- 1. Extreme values of functions
- 2. Mean value theorem
- 3. First and Second Derivative Test
- 4. Concavity
- 5. Applied Optimization
- 6. Related Rates
- 7. Newton's Method
- 8. Antiderivatives

D. Integrals

- 1. Finite sums
- 2. Definite integral
- 3. Fundamental Theorem of Calculus
- 4. Indefinite Integrals
- 5. Substitution Method

E. Applications of Definite Integrals

- 1. Area between curves
- 2. Volumes of solids

V. INSTRUCTIONAL MATERIALS

SUGGESTED TEXTBOOKS and/or MATERIALS

- 1. Thomas' Calculus Early Transcendentals; Weir, Pearson
- 2. Thomas' Calculus; Hass, Pearson
- 3. Calculus; Larson & Edwards, Cengage
- 4. University Calculus; Hass, Pearson
- 5. Calculus; Stewart-Thomson, Brooks/Cole
- 6. <u>Calculus Early Transcendentals</u>; Briggs/Cochran, Pearson
- 7. Calculus Volume 1; Herman & Strang, Openstax Rice University

Equipment: Graphing calculator recommended

Nebraska Transfer Initiative

MATH1600 – Analytic Geometry and Calculus I

VI. METHODS OF PRESENTATION/INSTRUCTION

- A. Methods of presentation are determined by the instructor. They traditionally include some combination of the following:
 - 1. Lecture
 - 2. Class Discussion
 - 3. Presentation and discussion of solutions to problems and exercises

VII. METHODS OF EVALUATION

- A. Methods of evaluation are determined by the instructor. Evaluation traditionally include some combination of the following:
 - 1. Unit Tests
 - 2. Comprehensive final exam
 - 3. Quizzes
 - 4. Assignments
- B. Students will receive a course outline/syllabus indicating the instructor's specific attendance policy, course timeline, course requirements, and grading criteria.

VIII. INSTITUTIONAL DEFINED SECTION

(To be used at the discretion of each community college as deemed necessary)

Nebraska Transfer Initiative

MATH1600 – Analytic Geometry and Calculus I

Updated: 2024

Page 5 of 5